top of page


Below are select publications from the Higuita-Castro Nanomedicine Lab. For a full list of accredited publications, please click the button below to visit Dr. Higuita-Castro's Google Scholar page.

miR-146a regulates mechanotransduction and pressure-induced inflammation in small airway epithelium


Mechanical ventilation generates biophysical forces, including high transmural pressures, which exacerbate lung inflammation. This study sought to determine whether microRNAs (miRNAs) respond to this mechanical force and play a role in regulating mechanically induced inflammation. Primary human small airway epithelial cells (HSAEpCs) were exposed to 12 h of oscillatory pressure and/or the proinflammatory cytokine TNF-α. Experiments were also conducted after manipulating miRNA expression and silencing the transcription factor NF-κB or toll-like receptor proteins IRAK1 and TRAF6. NF-κB activation, IL-6/IL-8/IL-1 β cytokine secretion, miRNA expression, and IRAK1/TRAF6 protein levels were monitored. A total of 12 h of oscillatory pressure and TNF-α resulted in a 5- to 7-fold increase in IL-6/IL-8 cytokine secretion, and oscillatory pressure also resulted in a time-dependent increase in IL-6/IL-8/IL-1β cytokine secretion. Pressure and TNF-α also resulted in distinct patterns of miRNA expression, with miR-146a being the most deregulated miRNA. Manipulating miR-146a expression altered pressure-induced cytokine secretion. Silencing of IRAK1 or TRAF6, confirmed targets of miR-146a, resulted in a 3-fold decrease in pressure-induced cytokine secretion. Cotransfection experiments demonstrate that miR-146a's regulation of pressure-induced cytokine secretion depends on its targeting of both IRAK1 and TRAF6. MiR-146a is a mechanosensitive miRNA that is rapidly up-regulated by oscillatory pressure and plays an important role in regulating mechanically induced inflammation in lung epithelia.

bottom of page